Recursive computation of derivatives of elliptic functions and of incomplete elliptic integrals
نویسنده
چکیده
Presented are the recurrence formulas to compute the derivatives of a general elliptic function, Weierstrass’s ℘ function, the Jacobian elliptic functions, and the incomplete elliptic integrals in the forms of Jacobi and Legendre with respect to the argument or the amplitude. The double precision computation by the formulas is correct with 15 digits or so for the first 10 orders of differentiation at least.
منابع مشابه
Computing hypergeometric functions rigorously
We present an efficient implementation of hypergeometric functions in arbitraryprecision interval arithmetic. The functions 0F1, 1F1, 2F1 and 2F0 (or the Kummer U -function) are supported for unrestricted complex parameters and argument, and by extension, we cover exponential and trigonometric integrals, error functions, Fresnel integrals, incomplete gamma and beta functions, Bessel functions, ...
متن کاملNumerical inversion of a general incomplete elliptic integral
We present a numerical method to invert a general incomplete elliptic integral with respect to its argument and/or amplitude. The method obtains a solution by bisection accelerated by the half argument formulas and the addition theorems to evaluate the incomplete elliptic integrals and Jacobian elliptic functions required in the course. If a faster execution is desirable at the cost of complexi...
متن کاملSolutions of elliptic integrals and generalizations by means of Bessel functions
Keywords: Hyperelliptic integrals Elliptic integrals Epstein–Hubbell integral Bessel functions Lauricella function a b s t r a c t The elliptic integrals and its generalizations are applied to solve problems in various areas of science. This study aims to demonstrate a new method for the calculation of integrals through Bessel functions. We present solutions for classes of elliptic integrals an...
متن کاملTable of integrals of squared Jacobian elliptic functions and reductions of related hypergeometric R-functions
Any product of real powers of Jacobian elliptic functions can be written in the form csm1 (u, k) ds2 (u, k) nsm3 (u, k). If all three m’s are even integers, the indefinite integral of this product with respect to u is a constant times a multivariate hypergeometric function R−a(b1, b2, b3; x, y, z) with halfodd-integral b’s and −a + b1 + b2 + b3 = 1, showing it to be an incomplete elliptic integ...
متن کاملThree Improvements in Reduction and Computation of Elliptic Integrals
Three improvements in reduction and computation of elliptic integrals are made. 1. Reduction formulas, used to express many elliptic integrals in terms of a few standard integrals, are simplified by modifying the definition of intermediate "basic integrals." 2. A faster than quadratically convergent series is given for numerical computation of the complete symmetric elliptic integral of the thi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Applied Mathematics and Computation
دوره 221 شماره
صفحات -
تاریخ انتشار 2013